Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(17): 19169-19181, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708239

ABSTRACT

BACKGROUND: The role of mitochondria-associated endoplasmic reticulum membrane (MAM) formation in the development of osteoarthritis (OA) is yet unclear. METHODS: A mix of bioinformatics methods and in vitro experimental methodologies was used to study and corroborate the role of MAM-related genes and cellular senescence-related genes in the development of OA. The Gene Expression Omnibus database was used to obtain the microarray information that is relevant to the OA. Several bioinformatic methods were employed to carry out function enrichment analysis and protein-protein correlation analysis, build the correlation regulatory network, and investigate potential relationships between MAM-related genes and cellular senescence-related genes in OA. These methods also served to identify the MAM-related and OA-related genes (MAM-OARGs). RESULTS: For the additional functional enrichment analysis, a total of 13 MAM-OARGs were detected. The correlation regulatory network was also created. Hub MAM-OARGs were shown to have a strong correlation with genes relevant to cellular senescence in OA. Results of in vitro experiments further demonstrated a positive correlation between MAM-OARGs (PTPN1 and ITPR1) and cellular senescence-related and OA-related genes. CONCLUSIONS: As a result, our findings can offer new insights into the investigations of MAM-related genes and cellular senescence-related genes, which could be linked to the OA as well as brand-new potential treatment targets.

2.
Genomics ; 115(4): 110645, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37230182

ABSTRACT

The processes driving ferroptosis and rotator cuff (RC) inflammation are yet unknown. The mechanism of ferroptosis and inflammation involved in the development of RC tears was investigated. The Gene Expression Omnibus database was used to obtain the microarray data relevant to the RC tears for further investigation. In this study, we created an RC tears rat model for in vivo experimental validation. For the additional function enrichment analysis, 10 hub ferroptosis-related genes were chosen to construct the correlation regulation network. In RC tears, it was discovered that genes related to hub ferroptosis and hub inflammatory response were strongly correlated. The outcomes of in vivo tests showed that RC tears were related to Cd68-Cxcl13, Acsl4-Sat1, Acsl3-Eno3, Acsl3-Ccr7, and Ccr7-Eno3 pairings in regulating ferroptosis and inflammatory response. Thus, our results show an association between ferroptosis and inflammation, providing a new avenue to explore the clinical treatment of RC tears.


Subject(s)
Ferroptosis , Rotator Cuff Injuries , Rats , Animals , Rotator Cuff Injuries/genetics , Rotator Cuff Injuries/metabolism , Ferroptosis/genetics , Receptors, CCR7/metabolism , Rotator Cuff/metabolism , Inflammation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...